HTBasic Help
×
Menu
Index

COS Example

10     !    This example demonstrates the usage of the trigonometric
20     ! functions. The following triangle will be used:
30
40     !    |\
50     !    | a\   Given C = 4 units and angle
60     !   C|    \B            c = 53.1301023542  degrees
70     !    |b     c\           Note: angle b = 90 degrees.
80     !    +--------
90     !        A
100   CLEAR SCREEN
110   DEG ! get in degree mode
120   REAL A,B,C
130    ! Given:
140   C=4
150   Angle_c=53.1301023542
160   Angle_b=90
170    ! Angle a can be found by simply subtracting the total given
180    ! angles by 180 degrees. Every triangle only has 180
190    ! degress.
200   Angle_a=180-(Angle_c+Angle_b)
210    ! The sine of angle c is defined as C over B. Solving for
220    ! B gives us:
230   B=C/SIN(Angle_c)
240    ! The cosine of angle c is defined as A over B. Solving for
250    ! A gives us:
260   A=B*COS(Angle_c)
270    ! To double check the answers, one possible way is:
280    ! Given: A^2 + C^2 = B^2 and solving for C
290   IF SQR(B^2-A^2)=C THEN
300     PRINT "The leg A =";A;"units."
310     PRINT "The leg B =";B;"units."
320     PRINT "The leg C =";C;"units."
330     PRINT "Angle a is = ";Angle_a;"degrees."
340     PRINT "Angle b is = ";Angle_b;"degrees."
350     PRINT "Angle c is = ";Angle_c;"degrees."
360   ELSE
370     PRINT "An error has occurred."
380   END IF
390   END