tan Example

10!    This example deminstrates the usage of the trigonometric
20! functions. The following triangle will be used:
30!
40!    |\
50!    |a \        Given C = 5 units and angle c = 35 degrees
60!   C|    \B
70!    |b    c\           Note: angle b = 90 dgrees.
80!    +--------
90!        A
100   CLEAR SCREEN
110   DEG ! get in degree mode
120   REAL A,B,C
130! Given:
140   C=4
150   Angle_c=60
160   Angle_b=90
170! Angle a can be found by simply subtracting the total given
180! angles by 180 degrees. Every triangle only has 180
190! degress.
200   Angle_a=180-(Angle_c+Angle_b)
210! The sine of angle c is definded as C over B. Solving for
220! B gives us:
230   B=C/SIN(Angle_c)
240! The tangent of angle c is definded as C over A. Solving for
250! A gives us:
260   A=C/TAN(Angle_c)
270! To double check the answers, one possible way is:
280! Given: A^2 + C^2 = B^2 and solving for C
290   IF SQR(B^2-A^2)=C THEN
300     PRINT "The leg A =";A;"units."
310     PRINT "The leg B =";B;"units."
320     PRINT "The leg C =";C;"units."
330     PRINT "Angle a is = ";Angle_a;"degrees."
340     PRINT "Angle b is = ";Angle_b;"degrees."
350     PRINT "Angle c is = ";Angle_c;"degrees."
360   ELSE
370     PRINT "An error has occured."
380   END IF
390   END